

TEST EQUIPMENT PLUS

LINUX API for Signal Hound USBSA-44 version 0.1

Signal Hound Application

Programming Interface

 i

TEST EQUIPMENT PLUS

Signal Hound USBSA-44 LINUX

Application Programming Interface (API)

 2010, Test Equipment Plus
35707 NE 86th Ave

Phone (360) 263-5006 • Fax (360) 263-5007

 i

Table of Contents

Introduction___1

Using the Signal Hound in Linux__2
Installing the Linux Drivers ___2

Function Listing ___3

Initialization __3

Configuration ___4

Slow Sweep ___5

Fast Sweep ___6

Calculate RBW__7

Select External Reference ___8

Select External Trigger or Sync Out___8

Using the RF Preamplifier (USB-SA44B)___9

Using Multiple Signal Hounds__9

Using the Measurement Receiver __10

Error Codes __11

 1

Introduction

About the Linux Signal Hound API and building applications.

he Signal Hound Application Programming Interface is a tool for software engineers to design custom
applications for the Signal Hound. Like the Signal Hound Graphical User Interface (GUI), the API is
used to send commands to, and receive data from, the Signal Hound device. But unlike the Signal
Hound GUI, you have the flexibility as a programmer to control the Signal Hound at a lower level, and

process, log or store data in any format you choose.

DISCLAIMER—This API is provided free of charge, without warranty or support. Software
developers may only use this API with a genuine Signal Hound®.

This API is in BETA testing. Anticipate a few hiccups, and please report problems encountered.

The Linux API consists of a static library, libSHLAPI.a, and the Class CUSBSA (with files CUSBSA.cpp,
CUSBSA.h, and SHLAPI.h). The library is built in C and can be used with any C compiler. The class, which
provides increased encapsulation and ease of use, is C++ and will typically be compiled with gcc or an
equivalent compiler. It is assumed the user is familiar with the Linux environment and including libraries in
custom projects, and that you have glanced at the windows-based API manual.

This manual will primarily discuss using the static library with the CUSBSA class.

CUSBSA has been designed to make acquiring sweep data as easy as possible. It includes constructors and
destructors, and manages trace data allocation for you. It will automatically call default initialize() and
configure() commands if you skip ahead to just grabbing a sweep, so for some applications only a few lines of
code are required. The simplest possible block of code to acquire a sweep from e.g. 310 MHz to 390 MHz is:

#include <iostream>

#include "CUSBSA.h"

using namespace std;

int main()

{

 CUSBSA mySignalHound;

 int i,returnCount = mySignalHound.FastSweep(310.0e6, 390.0e6);

 for(i=0; i<returnCount; i++)

 cout << mySignalHound.dTraceFreq[i]<< " Hz " << mySignalHound.dTraceAmpl[i] <<" dBm"<< endl;

}

Chapter

1

T

- 2 -

Using the Signal Hound in Linux

Installing the Linux Drivers
The Linux drivers can be downloaded from ftdichip.com. Please review the Readme before proceeding and
follow the instructions.

The Signal Hound uses the D2XX drivers. For Linux, this means that if your build already includes the Virtual
COM port, or VCP, drivers (Ubuntu does by default), you must "rmmod" or "blacklist" ftdi_sio and usbserial.

You may require a USB "Y" cable, with two type-A plugs, like you get with an external USB hard drive. I do
not fully understand why, but mine would not reliably work without it.

I developed the API and CUSBSA class using the Code::Blocks IDE.

Chapter

2

- 3 -

Function Listing

A Partial List of Functions for the class CUSBSA. This list will be updated as
functions are added.

Initialization

Functions: int CUSBSA::Initialize()
 int CUSBSA::Initialize(unsigned char * pCalData)

Arguments: pCalData (optional), a 4096 byte table of cal data

Execution Time: 1-8 seconds
Return values:
0 for success, otherwise returns error code (see appendix)

Remarks:
This function will automatically be called the first time you sweep.
You MUST call this function before setting preamplifiers, external references, etc.
Returns much faster when cal data is supplied.

Chapter

3

- 4 -

Configuration

Function: int CUSBSA:: Configure(double attenVal=10.0, int mixerBand=1, int sensitivity=0, int
decimation=1, int IF_Path=0, int ADC_clock=0)

Arguments:
attenVal—Attenuator setting. Must be 0.0, 5.0, 10.0, or 15.0 dB. 10 dB is default.

mixerBand—For RF input frequencies below 150 MHz this should always be set to 0. For RF
frequencies above 150 MHz this should always be set to 1.

Sensitivity—For lowest sensitivity, set to 0. For highest sensitivity set to 2.

Decimation—Sample rate is equal to 486.1111 Ksps divided by this number. Must be between 1 and 16,
inclusive. Part of resolution bandwidth (RBW) calculation.

IF Path—Set to 0 for default 10.7 MHz Intermediate Frequency (IF) path. This path has higher
selectivity but lower sensitivity. Set to 1 for 2.9 MHz IF path.

ADC clock—Set to 0 to select the default 23 1/3 MHz ADC clock. Set to 1 to select the for 22 ½ MHz
ADC clock, which is useful if your frequency is a multiple of 23 1/3 MHz.

Execution Time: 400 msec or less.

Return values:
0 for success, otherwise returns error code (see appendix)

Remarks:
This function configures the Signal Hound and prepares it to receive an RF signal.
This function will automatically be called before your first sweep if you omit it, but should be used to
optimize Signal Hound configuration for best performance.

- 5 -

Slow Sweep

Function: int CUSBSA::SlowSweep(double startFreq, double stopFreq, int FFTSize=1024, int
avgCount=16, int imageHandling=0)

Arguments:

StartFreq—Frequency of first amplitude value returned

StopFreq—Minimum frequency of last amplitude value returned. Due to rounding, several additional
values may be returned

FFTSize —Size of FFT. This and the decimation setting are used to calculate RBW. May be 16-65536 in
powers of 2.

avgCount —Number of FFTs that get averaged together to produce the output. The amount of data
captured at each frequency is a product of FFTSize and avgCount. This product must be a multiple of 512.

imageHandling —Set to 0 for default, IMAGE REJECTION ON (mask together high side and low side
injection). Set to 1 for HIGH SIDE INJECTION. Set to 2 for LOW SIDE INJECTION.

Execution Time: [40 + (FFTSize * avgCount * decimation) / 486] msec per slice. The number of
slices is equal to decimation * (stop – start) / 201KHz, rounded up.

Return values:

Count of frequency and amplitude values returned.

Remarks:
This function captures an array of data into the object's frequency and amplitude arrays. Amplitude
points are in dBm. Frequency points are in Hz. The first data point is equal to the starting frequency.
Subsequent data points are spaced by 486.1111 KHz / FFT size / decimation.
Data is stored in dTraceAmpl and dTraceFreq arrays.

External Trigger: When the external trigger is enabled, this function is blocking until a logic high is
received. Call this function with image handling set to 1, otherwise you will need a second trigger pulse
for the image rejection sweep.

- 6 -

Fast Sweep

Function: int CUSBSA::FastSweep(double startFreq, double stopFreq, int FFTSize=16, int
imageHandling=0)

Arguments:

StartFreq—Frequency of first amplitude value returned. This value is rounded to the nearest 200 KHz.

StopFreq—Frequency of last amplitude value returned. This value is rounded to the nearest 200 KHz.

FFTSize —Size of FFT. This is used to calculate RBW. May be 1 or 16-256, in powers of 2.

imageHandling —Set to 0 for default, IMAGE REJECTION ON (mask together high side and low side
injection). Set to 1 for HIGH SIDE INJECTION. Set to 2 for LOW SIDE INJECTION.

Execution Time: [40 + 1.2 * slice count] msec for large sweeps, up to twice this for small sweeps. The
number of slices is equal to (stop – start) / 200KHz, rounded up.

Return values:

Count of frequency and amplitude values returned.

Remarks:
Initialization and configuration are automatically called if they have not yet been called.
This function captures an array of data into the object's frequency and amplitude arrays. Amplitude
points are in dBm. Frequency points are in Hz. For FFT size of 1 (raw power only), data points are
spaced 200 KHz. Otherwise data points are spaced 400 KHz / FFT Size.
RBW is based on FFT size only, as decimation must be equal to 1.
Do not span the band break of 150 MHz.

Prior to calling Fast Sweep, configure as follows:
--DECIMATION MUST BE SET TO 1.
--IF PATH MUST BE SET TO 0.
--ADC CLOCK MUST BE SET TO 0.

- 7 -

Calculate RBW

Approximate RBW in Hz is automatically calculated for each sweep and is available in m_dCalcRBW
immediately after the sweep.

- 8 -

Select External Reference

Function:
int CUSBSA::External10MHz()

Return values:
0 for success, otherwise returns error code (see appendix)

Remarks:
Takes about 50 msec. Checks for >0 dBm 10 MHz reference. If present, the external 10 MHz is
selected.

Select External Trigger or Sync Out

Function:
void CUSBSA:: SetSyncTrig(int mode)

Remarks:
Mode may be set to:
SHAPI_EXTERNALTRIGGER triggers on an external logic high

SHAPI_SYNCOUT pulses high when data collection begins

SHAPI_TRIGGERNORMAL triggers immediately

When using an external trigger (3.3V or 5V OK), some functions (slow sweep, measurement receiver) will
wait for a logic high before beginning data collection. There is no timeout, so use the external trigger
with caution as it will halt operations until a TTL high is received.

- 9 -

Using the RF Preamplifier (USB-SA44B)

Function:
int CUSBSA::SetPreamp(int value)

Arguments:
value = 0 for preamplifier off, 1 for preamplifier on

Remarks:

USB-SA44B only!!!

Turns on or turns off the RF preamplifier. The preamplifier can be used to improve the sensitivity and
decrease LO feed-through for sensitive readings. Set the attenuator to ensure the preamplifier input sees
less than -25 dBm of input power to avoid overdriving your mixer and distorting your signal. Turn off
the preamplifier below 500 KHz.

Using Multiple Signal Hounds

Define multiple CUSBSA objects and use them independently.

- 10 -

Using the Measurement Receiver

MEAS_RCVR_STRUCT:
 // *** INPUTS ***

 double RFFrequency; //RF carrier frequency (Hz)

 double AudioLPFreq; //Audio LowPass Cutoff (Hz)

 double AudioBPFreq; //Audio BandPass Center (Hz)

 int UseLPF; //Set to non-zero to use audio low-pass filter

 int UseBPF; //Set to non-zero to use audio low-pass filter

 // *** OUTPUTS ***

 double RFCounter; //RF frequency count out (Hz)

 double AMAudioFreq; //AF frequency count out after AM demod (Hz)

 double FMAudioFreq; //AF frequency count out after FM demod (Hz)

 double RFAmplitude; //dB Full Scale.

 double FMPeakPlus; //Peak Positive Modulation, in Hz

 double FMPeakMinus; //Peak Negative Modulation, in Hz

 double FMRMS; //RMS Modulation, in Hz

 double AMPeakPlus; // In percent

 double AMPeakMinus;

 double AMRMS;

Function:
int CUSBSA::RunMeasurementReceiver ()

Arguments:
CUSBSA public variable m_MeasRcvr must be populated with appropriate input values. Initialize and
configure must be called before using this function.

Return values:
Ignore the int return value. m_MeasRcvr will be fully populated upon return.

Remarks:
It is strongly recommended that you use the 2.9 MHz IF in your Configure call. The incidental AM for the 2.9 MHz IF is
much lower than the 10.7 MHz, and it is more sensitive.

Keep your m_MeasRcvr.RFAmplitude readings between -45 and -5 dB Full Scale (dBFS) for best accuracy. As you
approach 0 dBFS, readings may become inaccurate. Above 0 dBFS readings are meaningless as you are overdriving the ADC.

You may Configure() different sensitivity and attenuator settings to change ranges, increasing system dynamic range. The
practice of taking a reading immediately before changing range, then immediately after changing to calculate an offset works
well, and is required for a large dynamic range.

The IF Bandwidth is controlled by the decimation setting in your SHAPI_Configure call.
IF Bandwidth = 240 KHz / decmation. Decimations of 1,2,4,8, or 16 are recommended. 64K samples are taken regardless of
IF bandwidth, so with decimation set to 16 the function will take about 2 seconds to return.

External Trigger: When the external trigger is enabled, this function is blocking until a logic high is
received.

 11

Error Codes

ERROR_HOUND_NOT_FOUND 100
ERROR_PACKET_HEADER_NOT_FOUND 101
ERROR_WRITE_FAILED 102
ERROR_WRONG_NUM_READ 103
ERROR_READ_TIMEOUT 104
ERROR_DEVICE_NOT_LOADED 105
ERROR_MISSING_DATA 106
ERROR_EXTRA_DATA 107
ERROR_OUT_OF_RANGE 200
ERROR_NO_EXT_REF 201

Appendix

A

